26. Autoevaluación.

Después de tantos post y tanta información llega el momento de medir si los conceptos han sido asimilados.

Vas a tener la posibilidad de autoevaluarte con estas preguntas en las que hay 4 respuestas con una sola opción correcta.

Apenas te llevará media hora, es un test fácil, adelante…

La ecografía es…

  1. Una radiación ionizante que aprovecha las propiedades acústicas de la materia.
  2. Una radiación no ionizante que aprovecha las propiedades aéreas de la materia.
  3. Una radiación no ionizante que aprovecha las propiedades acústicas de la materia.
  4. Ninguna es correcta.

https://ecografiafacil.com/2017/11/23/que-es-la-ecografia/

¿Dónde se produce el efecto piezoeléctrico?

  1. En el monitor del ecógrafo.
  2. En el transductor.
  3. En las interfases.
  4. En los tejidos.

https://ecografiafacil.com/2017/12/22/8-la-piezoelectricidad/

Clasifica los sonidos según su frecuencia. Señala la correcta.

  1. INFRASONIDOS: entre 0 y 20 KHz.
  2. SONIDOS AUDIBLES: entre 20 Hz y 20 MHz.
  3. ULTRASONIDOS: entre 20 KHz y 1 GHz ( 1 GHz = 109 Hz).
  4. HIPERSONIDOS: a partir de 100 GHz.

https://ecografiafacil.com/2017/12/08/3-clasificando-los-ultrasonidos/

Señala la correcta respecto del concepto del ultrasonidos:

  1. El ultrasonido es capaz de arrancar electrones de la órbita.
  2. El ultrasonido tiene frecuencias inferiores a los sonidos audibles.
  3. La onda de ultrasonido es sinusoide con áreas de rarefacción y compresión.
  4. b y c son correctas

https://ecografiafacil.com/2017/12/13/3-la-onda-ultrasonica-caracteristicas/

De modo general el US se propaga en el cuerpo humano a una velocidad de:

  1. 331 m/s
  2. 1450 m/s
  3. 1540 m/s
  4. 4080 m/s

https://ecografiafacil.com/2017/12/15/5-magnitudes-de-la-onda-otras-magnitudes/

La frecuencia en ecografía se define como:

  1. Número de ciclos que se producen por unidad de tiempo.
  2. Número de sondas por segundo.
  3. Es la máxima distancia que se desplaza una molécula desde su estado normal.
  4. Es la distancia de una compresión a la siguiente.

https://ecografiafacil.com/2017/12/14/4-magnitudes-de-la-onda-ultrasonica-la-frecuencia/

Define longitud de onda…

  1. Número de ciclos que se producen por unidad de tiempo.
  2. Es la máxima distancia que se desplaza una molécula desde su estado normal.
  3. Distancia entre dos puntos correspondiente de una curva de presión.
  4. Ninguna es cierta.

https://ecografiafacil.com/2017/12/15/5-magnitudes-de-la-onda-otras-magnitudes/

Respecto de la impedancia acústica, di la correcta:

  1. Es la resistencia del medio a la propagación de la onda sonora.
  2. Los sólidos tienen una alta impedancia, y los líquidos, partes blandas y gases tienen una baja impedancia.
  3. El gas transmite muy mal el ultrasonido.
  4. Todas son ciertas.

https://ecografiafacil.com/2017/12/17/6-interaccion-del-haz-ultasonico-y-la-materia/

¿Qué efectos aparecen en una interfase? Señala la correcta.

  1. Reflexión, relajación y excitación.
  2. Atenuación, relajación y excitación.
  3. Refracción, relajación y excitación.
  4. Calor.

https://ecografiafacil.com/2017/12/19/7-las-interfases/

¿la zona de mayor utilidad para la ecografía, respecto del haz ultrasónico, es?:

  1. Zona Focal.
  2. Fraunhofer.
  3. Fresnel
  4. b y c son correctas.

https://ecografiafacil.com/2017/12/23/9-el-haz-ultrasonico/

¿Qué  sonda ecográfica usaremos en un estudio normal de Abdomen?

  1. Cónvex
  2. Lineal
  3. Intracavitaria
  4. Sonda lápiz

https://ecografiafacil.com/2018/01/01/11-tipos-de-transductores/

¿Qué  sonda ecográfica usaremos en un estudio normal de Tiroides?

  1. Cónvex
  2. Lineal
  3. Intracavitaria
  4. Sonda lápiz

https://ecografiafacil.com/2018/01/01/11-tipos-de-transductores/

¿Qué  sonda ecográfica usaremos en un estudio normal de Cadera Pediátrica?

  1. Cónvex
  2. Lineal
  3. Intracavitaria
  4. Sonda lápiz

https://ecografiafacil.com/2018/01/01/11-tipos-de-transductores/

El Modo B o 2D es:

  1. Modulación de amplitud.
  2. Modulación de brillo.
  3. El modo más usado en medicina.
  4. b y c son correctas.

https://ecografiafacil.com/2018/01/07/14-parametros-tecnicos-los-modos-de-trabajo/

La Ganancia General es:

  1. Capacidad que tenemos de modificar el contraste de la imagen.
  2. Capacidad que tenemos de modificar el brillo de toda la imagen.
  3. Es la modulación de la amplitud del ultrasonido.
  4. b y c son las correctas.

https://ecografiafacil.com/2018/01/10/15-la-ganancia-general/

Respecto del Foco o Enfoque señala la falsa:

  1. Aumentamos la nitidez en la línea donde lo situemos.
  2. Es un comando dependiente del Técnico que esté realizando la ecografía.
  3. Los equipos modernos son monofocales.
  4. Es vital su uso para una correcta visualización de la estructura a estudio.

https://ecografiafacil.com/2018/01/18/19-el-foco/

¿En ecografía médica si aumentamos la frecuencia en un estudio…?

  1. Obtendremos menos profundidad, pero obtendremos más nitidez.
  2. Obtendremos más profundidad, pero obtendremos menos nitidez.
  3. Obtendremos menos profundidad y obtendremos menos nitidez.
  4. Obtendremos más profundidad y obtendremos más nitidez.

https://ecografiafacil.com/2018/01/24/21-la-frecuencia/

Del Rango Dinámico depende…

  1. El brillo de la pantalla.
  2. Depende el contraste de la pantalla.
  3. Depende la nitidez de la imagen.
  4. a y b son correctas.

https://ecografiafacil.com/2018/02/02/23-el-rango-dinamico/

Usaremos el armónico cuando…

  1. La imagen fundamental no es buena.
  2. Es recomendable cuando hay muchas interfases.
  3. La imagen armónica procesa ecos generados por la imagen fundamental.
  4. Todas son correctas.

https://ecografiafacil.com/2018/01/29/22-los-armonicos/

La Potencia de transmisión del ecógrafo:

  1. tiene que ver con el criterio ALARA.
  2. Tiene que ver con el IM.
  3. Tiene que ver con la calidad de la imagen.
  4. Todas son correctas.

https://ecografiafacil.com/2018/02/04/24-la-potencia-de-transmision/

Espero que hayas disfrutado. En cada pregunta tienes el enlace para que busques la respuesta correcta.

 

 

15. La Ganancia General.

En el botón 2D encontramos otra función vital además de la representación de la imagen en 2 dimensiones, a la que accedemos presionando este botón.

Encontramos que normalmente este botón tiene la capacidad de girar como una rueda y así intervenimos en el brillo de la imagen de manera global en la pantalla. Esta otra función del botón 2D es la llamada “Ganancia General” o “Gain” y la podemos definir como la capacidad que tenemos de modificar la amplitud del eco (magnitud de onda ultrasónica), resultando una imagen más o menos brillante. Los cambios de la ganancia general afectan a toda la imagen por igual. Dependerá y tendrá que ser adaptada a las características de cada paciente.

Es como si estás escuchando tu programa favorito de la televisión, pero no lo oyes bien y subes el volumen del aparato para poder escuchar correctamente…

In the 2D button we find another vital function besides the representation of the image in 2 dimensions, which we access by pressing this button. We find that normally this button has the ability to rotate like a wheel and so we intervene in the brightness of the image globally on the screen. This other function of the 2D button is called “General Gain” or “Gain” and we can define it as the ability we have to modify the amplitude of the echo (ultrasonic wave magnitude), resulting in a more or less bright image. Changes in the general gain affect the entire image equally. It will depend and it will have to be adapted to the characteristics of each patient. It’s as if you’re listening to your favorite TV show, but you do not hear it well and you raise the volume of the device to be able to listen correctly …
Marca 1
Marca 2

En la marca 1 solo podemos controlar la ganancia general en el botón 2D, en la marca 2 podemos hacerlo en 2D y además en la rueda central que rodea el track ball y que está marcado con la palabra “gain”.

La ganancia general interviene por tanto sobre los eco recibidos, es decir, sobre los ecos de retorno, y solo sobre ellos. En la imagen vamos a ver que lo que estamos haciendo al manejar la ganancia general, es intervenir sobre el brillo de la imagen de manera global, como hemos dicho antes, pero quiero que lo veas en imágenes…

In the 1 mark we can only control the general gain in the 2D button, in the 2 mark we can do it in 2D and also in the central wheel that surrounds the track ball and that is marked with the word “gain”. The general gain therefore intervenes on the echoes received, that is, on the return echoes, and only on them. In the image we will see that what we are doing when managing the general gain, is to intervene on the brightness of the image in a global way, as we have said before, but I want you to see it in images …

En estas 3 imágenes que vemos, tenemos una imagen que se ve con muy poco brillo, la primera, otra con un brillo óptimo, la segunda y una tercera excesivamente brillante. Tanto la primera como la tercera tienen una ganancia general incorrecta y nosotros la podemos modificar hasta dejar un brillo correcto, como en la imagen segunda.

Por tanto, este ajuste ecográfico o parámetro técnico depende del operador y es modificable por el mismo. Es el operador el que puede intervenir con este comando sobre la imagen. Es importantísimo y además se usa asíduamente, siendo uno de los principales ajustes ecográficos que tenemos que conocer y manejar perfectamente.

Para resumir, la ganancia general interviene en el brillo general de la pantalla, es modificable por el operador y es la capacidad que tenemos de modificar la amplitud de eco, recordemos la magnitudes de la onda ecográfica que estudiamos en el episodio 5… Depende del paciente y del estudio y es función del Técnico, del operador, encontrar la ganancia más apropiada para conseguir la mejor imagen posible para su uso diagnóstico.

In these 3 images that we see, we have an image that is seen with very little brightness, the first, another with an optimal brightness, the second and an excessively bright third. Both the first and the third have an incorrect general gain and we can modify it to leave a correct brightness, as in the second image. Therefore, this ultrasonic adjustment or technical parameter depends on the operator and is modifiable by the operator. It is the operator who can intervene with this command on the image. It is very important and it is also used regularly, being one of the main echographic adjustments that we have to know and handle perfectly. To summarize, the general gain intervenes in the overall brightness of the screen, is modifiable by the operator and is the ability we have to modify the amplitude of echo, remember the magnitudes of the ultrasound wave we studied in episode 5 … It depends of the patient and the study and it is the function of the Technician, of the operator, to find the most appropriate gain to obtain the best possible image for its diagnostic use.

5. Magnitudes de la Onda. Otras Magnitudes.

Estudiado y comprendida la Frecuencia, vamos a desgranar otra serie de magnitudes que debemos conocer.

Son la Longitud, la Amplitud y la Velocidad de propagación de la Onda de ultrasonidos.

Volvemos al punto 4, donde hablábamos de la frecuencia, tan importante ella, y tenemos que diferenciar muy bien entre frecuencias altas y frecuencias bajas.

Studied and understood the Frequency, we are going to shed another series of magnitudes that we must know. They are the Length, the Amplitude and the Speed ​​of propagation of the wave of ultrasounds. We return to point 4, where we talked about the frequency, so important, and we have to differentiate very well between high frequencies and low frequencies.

Como se ve en la gráfica, las frecuencias bajas separan más los valles y los picos que en las frecuencias altas que se aproximan mucho más. La separación entre los picos de la onda, por ejemplo, es la longitud de onda. Tendremos entonces que:

Longitud de onda: Es la distancia entre los puntos correspondientes de una curva de presión – tiempo, y se representa con la letra griega Lambda que es una “V” invertida. (distancia entre picos ).

Amplitud de onda: Es la máxima distancia que se desplaza una molécula desde su estado normal.

Velocidad de propagación: Es el espacio que recorre la onda por unidad de tiempo.

En la gráfica que observamos a continuación vemos su representación.

As seen in the graph, low frequencies separate valleys and peaks more than high frequencies that are much closer. The separation between the peaks of the wave, for example, is the wavelength. We will then have to: Wavelength: Is the distance between the corresponding points of a pressure-time curve, and is represented by the Greek letter Lambda which is an inverted “V”. (distance between peaks). Wave amplitude: The maximum distance a molecule moves from its normal state. Propagation speed: It is the space that the wave travels per unit of time. In the graph that we see below we see its representation.

La velocidad de propagación de la onda de ultrasonido en un medio determinado es constante. La velocidad se modifica cuando la onda pasa de un medio a otro.

Esta velocidad  con la que se desplaza la onda, también conocida como ondas de presión a través de los tejidos que estemos explorando se va a ver potentemente influenciada por las propias características físicas de los tejidos en cuestión, me explico,  la velocidad de propagación se puede ver alterada por la resistencia que oponga el medio atravesado, que a la vez, se relaciona irremediablemente con la densidad del propio medio, su temperatura, la presión y su rigidez o elasticidad.

Podemos decir por tanto, con los datos que hemos manejado en el apartado 4 y 5 que:

Velocidad (V) = Longitud de onda X Frecuencia

Además…y muy importante, Longitud de onda y Frecuencia son inversamente proporcionales, si disminuye la longitud de onda, aumenta la frecuencia, como hemos visto en la primera gráfica de este capítulo.

En el ser humano la velocidad de propagación es de 1540 m/s. Pero este dato es una constante asumida, ya que por ejemplo, tenemos que en la grasa la velocidad es de 1450 m/s, en la sangre, 1570 m/s y como dispares, pero muy importantes, el aire corporal, donde la onda viaja a tan solo 330 m/s o el hueso que lo hace a 4080 m/s.

Para finalizar y a modo de resumen tenemos que las magnitudes de la onda son:

Frecuencia, Periodo, Amplitud de Onda, Longitud de Onda y Velocidad de propagación.

The propagation speed of the ultrasound wave in a given medium is constant. The speed is modified when the wave passes from one medium to another. This speed with which the wave travels, also known as pressure waves through the tissues that we are exploring will be strongly influenced by the physical characteristics of the tissues in question, I mean, the speed of propagation can be to see altered by the resistance that opposes the crossed medium, that at the same time, is irremediably related to the density of the medium itself, its temperature, pressure and its rigidity or elasticity. We can therefore say, with the data we have handled in section 4 and 5 that: Speed ​​(V) = Wavelength X Frequency Also … and very important, Wavelength and Frequency are inversely proportional, if the wavelength decreases, the frequency increases, as we have seen in the first graph of this chapter. In humans, the propagation speed is 1540 m / s. But this data is a constant assumed, because for example, we have that in fat the speed is 1450 m / s, in the blood, 1570 m / s and as disparate, but very important, the body air, where the wave travels at only 330 m / s or the bone that does it at 4080 m / s. To finalize and as a summary we have that the magnitudes of the wave are: Frequency, Period, Wave Amplitude, Wavelength and Velocity of propagation.

 

 

 

4. Magnitudes de la Onda Ultrasónica. La Frecuencia.

Dentro de las magnitudes de la onda ultrasónica, a mi modo de ver, la Frecuencia es, con mucho, la más importante de todas ellas.

La frecuencia de las cosas que pasan en la vida es la cantidad de veces que se sucede una cosa durante un tiempo determinado…por ejemplo, normalmente, es más frecuente que cojamos el coche a que cojamos un avión para desplazarnos.Es decir, coger el coche, es un gesto que se repite más.

En la onda de ultrasonidos, que aumente la frecuencia de la onda, quiere decir que los picos y los valles de la onda ultrasónica se repitan más en un mismo periodo de tiempo.La frecuencia de la onda disminuye cuando esos picos y valles se repiten menos en el mismo periodo de tiempo.

Por tanto, definir la frecuencia es muy importante y es el número de ciclos completos que se producen por unidad de tiempo.

—————
Within the magnitudes of the ultrasonic wave, in my view, Frequency is by far the most important of all of them. The frequency of things that happen in life is the number of times that something happens during a certain time … for example, normally, it is more frequent that we take the car to take a plane to move. That is, Take the car, it is a gesture that is repeated more. In the wave of ultrasound, which increases the frequency of the wave, it means that the peaks and valleys of the ultrasonic wave are repeated more in the same period of time. The frequency of the wave decreases when those peaks and valleys are repeated less in the same period of time. Therefore, defining the frequency is very important and is the number of complete cycles that occur per unit of time

Podemos ver gráficamente lo que es un ciclo y que podemos definir como  el momento en el que la onda vuelve a estar en el mismo punto de la gráfica desde que partió por primera vez.

La frecuencia es inversamente proporcional al periodo, es decir, se cumple que f = 1/T donde T es el periodo, teniendo entonces que, Periodo es el Tiempo en el que la onda “recorre” un ciclo completo.

Según el Sistema Internacional (SI), la frecuencia se mide en hercios (Hz), en honor a Heinrich Rudolf Hertz.

Se cumple, igualmente, que 1Hz = 1 ciclo por segundo.

Cuando las frecuencias son muy elevadas, y en ecografía clínica lo son, vamos a expresar la frecuencia en Megahercios donde 1MHz = 1.000.000 Hz.

Es vital que conozcamos y sobre todo, entendamos, lo que es la frecuencia, porque entendiendo esto, tendremos un gran paso ganado en el conocimiento de este pequeño mundo de la imagen clínica que es la ecografía. Según las frecuencia utilizadas en los Ecógrafos que usamos para realizar los estudios, utilizaremos diferentes transductores o sondas ecográficas para llevarlos a cabo, pero esto lo estudiaremos un poco más adelante.

We can see graphically what a cycle is and what we can define as the moment in which the wave returns to be in the same point of the graph since it started for the first time. The frequency is inversely proportional to the period, that is, it is fulfilled that f = 1 / T where T is the period, having then that, Period is the Time in which the wave “travels” a complete cycle. According to the International System (SI), the frequency is measured in hertz (Hz), in honor of Heinrich Rudolf Hertz. It is also true that 1Hz = 1 cycle per second. When the frequencies are very high, and in clinical ultrasound they are, we will express the frequency in Megahertz where 1MHz = 1,000,000 Hz. It is vital that we know and above all, understand, what is the frequency, because understanding this, we will have a great step gained in the knowledge of this small world of the clinical image that is the ultrasound. According to the frequencies used in the ultrasounds machines that we use to carry out the studies, we will use different transducers or sonographic probes to carry them out, but this we will study a little later.